Enhanced oral availability/pheromonotropic activity of peptidase-resistant topical amphiphilic analogs of pyrokinin/PBAN insect neuropeptides.

نویسندگان

  • Ronald J Nachman
  • Peter E A Teal
  • Allison Strey
چکیده

The peptide bond between active core residues Pro and Arg is the primary site of susceptibility for the pyrokinin/PBAN neuropeptides to insect tissue-bound peptidases, and incorporation of modified Pro residues can enhance resistance to peptidase hydrolysis. An Hyp-containing amphiphilic analog (Hex-FT[Hyp]RLa) is shown to operate as a topically active tissue-bound peptidase-resistant analog of the pyrokinin/PBAN class of insect neuropeptides in adult Heliothis virescens moths. An Oic amphiphilic analog (Hex-FT[Oic]RLa) is ineffective topically, but proves to be a superior tissue-bound, peptidase-resistant pyrokinin/PBAN analog for oral administration; outperforming both the Hyp analog and the orally inactive natural hormone PBAN in the moths. The Oic analog is effective in penetrating an isolated, ligated foregut preparation, but less successful in transmigrating an isolated midgut preparation; whereas the opposite behavior is observed for the Hyp analog. The success of the Oic analog via oral administration may be related to its ability to effectively penetrate the foregut, thereby bypassing the hostile environment of the midgut region.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An amphiphilic, PK/PBAN analog is a selective pheromonotropic antagonist that penetrates the cuticle of a heliothine insect.

A linear pyrokinin (PK)/pheromone biosynthesis activating neuropeptide (PBAN) antagonist lead (RYF[dF]PRLa) was structurally modified to impart amphiphilic properties to enhance its ability to transmigrate the hydrophobic cuticle of noctuid moth species and yet retain aqueous solubility in the hemolymph to reach target PK/PBAN receptors within the internal insect environment. The resulting nove...

متن کامل

A novel dihydroimidazoline, trans-Pro mimetic analog is a selective PK/PBAN agonist.

The pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) family plays a significant role in the regulation of reproductive and developmental processes in a variety of insects. A transPro, type I beta-turn has been previously identified as important for the activity of PK/PBAN peptides. A PK/PBAN analog (PPK-Jo) incorporating a novel dihydroimidazole transPro mimetic motif was eval...

متن کامل

Biostable beta-amino acid PK/PBAN analogs: agonist and antagonist properties.

The pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) family plays a significant role in a multifunctional array of important physiological processes in insects. PK/PBAN analogs incorporating beta-amino acids were synthesized and evaluated in a pheromonotropic assay in Heliothis peltigera, a melanotropic assay in Spodoptera littoralis, a pupariation assay in Neobellieria bullat...

متن کامل

Identification of a new member of the PBAN family of neuropeptides from the fire ant, Solenopsis invicta.

Neuropeptide hormones produced by neurosecretory cells in the central or peripheral nervous systems regulate various physiological and behavioral events during insect development and reproduction. PBAN/Pyrokinin is a major neuropeptide family, characterized by a 5-amino-acid C-terminal sequence, FXPRLamide. This family of peptides has been implicated in regulating various physiological function...

متن کامل

Biostable b-amino acid PK/PBAN analogs: Agonist and antagonist properties

The pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) family plays a significant role in a multifunctional array of important physiological processes in insects. PK/PBAN analogs incorporating b-amino acids were synthesized and evaluated in a pheromonotropic assay in Heliothis peltigera, a melanotropic assay in Spodoptera littoralis, a pupariation assay in Neobellieria bullata, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Peptides

دوره 23 11  شماره 

صفحات  -

تاریخ انتشار 2002